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Evaluation of geostatistics and wavelets for identifying relations between imagery and
different spatial resolutions and for data compression
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Introduction

This report embraces three aspects of recent work: a visit to the University of Reading by
James Shine of the Topographic Engineering Center (TEC) for one week in May 1999 and Dr
Oliver’s visit to TEC in July 1999 for three days; cokriging of Dr P. Krause’s temperature data
for Korea; and a partial analysis of the ground cover data for A. P. Hill.

Summary of work with James Shine

Dr Oliver and Mr Shine worked together for a week in May 1999 when Mr Shine visited the
University of Reading. This time was used for analyses, a draft outline of a proposed paper
and discussion. Mr Shine wished go over the analysis for computing the variogram from large
sets of data. We experimented with some of the 1-m data for A. P. Hill using the program
ggrid3.f, written for the project by Professor R. Webster. Mr Shine wanted to develop his
experience in this so that he can compute variograms from large data sets within a short time.
He left reading feeling confident about this. In addition we also fitted models to the variograms
with Genstat and again this reinforced what we did together at TEC last year.

A considerable part of the week was spent discussing the results from the final report of
contract No. N68171-97-C-9029 which we now wish to publish. We examined previous issues
of the International Journal of Remote Sensing to see whether this was suitable for this work.
We decided that it was, but that as the content will be small compared with the previous paper
we shall submit it as a Letter. This is confusing because this form of publication is a short paper
in essence and will suit our needs perfectly in this instance. An outline of the paper has been
prepared and the introduction written. We shall continue with this when Dr Oliver visits TEC
in July.

The remaining time was spent discussing the recent work on the ground survey data. Part of
this work is included in this report. However, there is still some way to go on this. We also
discussed future work. One idea is to compute a moving variogram to deal with the problems
of local trends or non-stationarity in the data. This arises at A. P. Hill for example where there
are water bodies and areas of hard standing and buildings. The computer code for this will be
written as part of the current contract, but any testing of it will have to be done in the future.

Dr Oliver visited TEC in July 1999 for three days. On arriving she gave a short briefing to Mr
W. Clarke (head of section) on the status of our current research, how this builds on work
done in the past and where any future research is likely to develop. On the second day Dr
Oliver had a meeting with Dr Roper together with Mr Shine. This was to discuss present work
and also spatial investigations more generally. Dr Roper invited Dr Oliver to give a general
briefing to TEC next year on the research to date.



Part of each day was spent with Mr E. Bosch. We have been exploring a one-dimensional set
of radon values in soil where we know there are distinct boundaries. The aim is to see how
wavelet analysis deals with this variation and also that of the residuals from the geological
classes. We explored different levels of resolution for the raw data. This work is still to be
completed.

The work with Mr Shine began by extracting part of the data from the SPOT image and the
digital elevation model (DEM). We plan to explore the relations in this smaller file in more
detail because statistically the relation between the wavebands and the DEM was weak, yet it
was fairly strong for the NIR band visually. The weak relation might arise from the areas of
hard standing and buildings which have no particular relation with the elevation. The program
gerid.f would not work with these small files - Mr Shine has since discovered that the zero
origin has caused part of the problem.

We continued the discussion about the Letter for IJRS and have decided to use NDVI of
subsets from the whole site covered by the 1 m data. This work is being done at present.




Part I
Cokriging temperature data in Korea

The data for the analysis were provided by Dr P. Krause. They comprised temperature and

-elevation records at 100 sites irregularly scattered over Korea. In addition elevation had been

measured at another 565 sites. Table 1 gives the summary statistics for these variables at places
where they were both measured. Both have distributions that depart from normality, in
particular. Although a geostatistical analysis does not assume that the data are normally
distributed it is generally advisable to transform the data to a near-normal distribution for the
variogram analysis to stabilize the variances.

Both variables were transformed to common logarithms and for elevation the skewness
decreased markedly and the transformed data are close to normal. Temperature departs less so
from a normal distribution, but after transformation to common logarithms the departure from
normality increases.

Table 1 Summary statistics for Elevation and Temperature

Elevation Temperature Log Elevation Log Temperature

Number of observations | 100 100 100 100

Mean 403.45 53.02 5.17 3.97
Minimum 8.00 33.00 2.08 3.50
Maximum 4546.00 62.00 8.42 413
Variance 574928.23 24 .95 1.53 0.011
Standard deviation 758.24 4.99 1.24 0.103
Skewness 3.836 -1.45 0.21 -1.93

The data were also examined for trend as part of the exploratory data analysis. This would
generally be normal practice when one of the variables is elevation because it can vary in a
predictable way. However, in this case it was temperature not elevation whose variation
comprised a large element of trend. For elevation linear trend counted for 13.8% of the
variation, and quadratic trend for 21.0%. This is much less than expected. It is marginal as to
whether this degree of trend should be removed, but it was to ensure that the analysis was
reliable. For temperature the trend was much greater: a linear trend accounted for 74.9% of the
variation and the quadratic one 77.9%. Clearly a linear trend model is adequate for describing
the trend for temperature.

The aim of this analysis was to assess whether temperature could be estimated more reliably
with the use of additional information from elevation. In geostatistics the method used is
known as cokriging. The value of the method is that it can be used to estimate a property that
is more expensive to measure using information from another variable with which it is
coregionalized and that is cheaper to measure or that does not change with time. This is
particularly true in general for temperature and elevation. There is a physical reason for their
relation and elevation does not change substantially in the short term. Therefore, once a digital
elevation model has been produced it is a source of inexpensive and reliable information.
Cokriging depends on the two (or more) variables being strongly correlated. From the



correlation matrix below it is clear that the correlation between elevation and temperature is
moderate.

Table 2. Correlation matrix for temperature and elevation in Korea.

*** Correlation matrix ***

Elevation 1 1.000
Temperature 2 -0.741 1.000
1 2

This level of correlation would suggest that it is worthwhile pursuing a coregionalization
analysis. The classical correlation coefficient does not take spatial location into account,
therefore the relation spatially could be either better or worse.

Cokriging: Theory
The cross variogram
This is the logical extension of ordinary kriging to situations where two or more variables are
spatially interdependent or co-regionalized. The first stage is to model the coregionalization.

The two regionalized variables, Z,(x) and Z,(x), denoted by # and v, both have an
autovariogram defined by:

()= BI{Z, () - Z,(x + )]

and

7,(0) =2 EL{Z, (9~ Z,(+B)}’],

and a cross variogram defined as:

1
7w() =2 E[Z,(x) - Z,(x+ )} {Z,0)-Z,(x+h)}].
The cross variogram function describes the way in which  is related spatially to v. Provided
that there are sites where both properties have been measured y,,(h) can be estimated by:
- 1
)= 5 s 2120 - 2, Wz, () -2, (x4 ).

i=1

which provides the experimental cross variogram for # and v.




The cross variogram can be modelled in the same way as the autovariogram, based on the
linear model of coregionalization. Each variable is assumed to be a linear sum of orthogonal
random variables ¥ (x):

Z,® =2 Da Y () +u,

k=1 j=1
in which

E[Z(0)] = t

1 ' ,

EE[{Y}" x)- yjk (x+h)} {Yj’f (x) - Yj’.‘ (x+h)}]
=g, (h), positive fork = k' andj = J'

=0 otherwise

The variogram for any pair is then:

K 2

Yw() =2 D asasg,(h).

k=1 j=1

We can replace the products in the second summation by 5%, to obtain:

¥ (h) = ;b,fvgk(h)-

The variogram for any pair of variables # and v is:

The b% are the nugget and sill variances of the independent components if they are bounded,

v

and for unbounded models they are the nugget variances and gradients.

Cokriging

Once to coregionalization has been modelled it can be used to predict the spatial relations
between two or more variables by cokriging. There are generally two reasons for using
cokriging:

1. Where one variable is under-sampled compared with another with which it is
correlated. The sparsely sampled property can be estimated with greater precision by
co-kriging because the spatial information from the more intensely measured one is
used in the estimation. The increase in precision depends on the degree of under-
sampling and the strength of the coregionalization.



2. When values of all of the variables are known at all sample points, cokriging can
improve the coherence between the estimated values by taking account of the
relation between them.

If there are ¥ variables, /= 1,2,..., ¥, and the one to be predicted is #, which in our case has
been less densely sampled than the others. In ordinary cokriging the estimate is the linear sum:

2B)=% Z Az (5,),

where the subscript / refers to the variables, of which there are 7, and the subscript i refers to
the sites, of which there are n; where the variable / has been measured. The
Ai are the weights, satisfying:

i n
zjﬂ:l’ I=u; and Z’LI:O, l#u.
i=1

i=1

These are the non-bias conditions, and subject to them the estimation variance of
Zu (B) for a block, B, is minimized by solving equations :

Vv on
D2 Ay LX)+, =7, (x,,B) for all v=1,2 to ¥ and all j=1,2 to n,.

1=1 i=1

The quantity y,(x;, ;) is the cross semivariance between variables / and v at sites # and j,
separated by the vector x- x;; 7,,(x;,B) is the average cross semivariance between a site j and

the block B, and v, is the Lagrange multiplier for the vth variable. The cokriging variance is
obtained from:

Von
O-:(B) = Zzﬂ‘ﬂ}al(xj,B)_Fl//u _}-;uu(B>B)

=1 i=1

where y,, (B, B) is the integral of y,, (h)over B, i.e. the within-block variance of .

Analysis and results of cokriging
Cross variogram
The experimental autovariograms for the raw values of elevation and temperature were

computed first. They showed some similarity in their shapes and also ranges of spatial
dependence (Figure 1). The autovariograms were then computed on the residuals from the




linear trend for temperature and on the residuals from the quadratic trend for elevation. In
addition the elevation was transformed to common logarithms and the variogram was also
computed from the transformed data. Considering that the level of skewness is substantial
reducing it appears to have had little effect on the variogram. In fact it is less clearly bounded
and less related to the variogram of temperature than that for the raw data. The variograms
computed from the residuals were more erratic and more difficult to model than those of the
raw data. Since the trend appears to be regional in the case of temperature, at the longer lags, 1
decided to do the analysis on the raw data and the residuals. For kriging it is the first few lags
that are important and these are less likely to be affected by the trend than the longer lags.

Although it is important to check the data in this way, the changes did not appear to improve
the variogram substantially. This will become evident when the cokriging results are discussed.
However, cokriging was carried out on the raw data and the detrended data. During the
remaining time on the project I might do some further tests, but I do not expect any major
changes.

The experimental auto- and cross-variograms for the raw data are given in Figurel. They have
a similar form and the individual autovariograms were fitted best by an exponential model with
a distance parameter of about 0.86 units. The same form of model must fit all of the
variograms and the range or distance parameter must be the same. The nugget variance, the
sills of bounded models and the slope of unbounded models can be different. The
coregionalization was modelled by an exponential function with a distance parameter of 0.86
units of latitude and the lower triangle of the sills is given below. The coregionalization of the
residuals for elevation and temperature were also modelled and the values used for kriging.
The variograms for the residuals were fitted best by a spherical function with a range of 1.01
units of latitude.
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Table 3. Models of coregionalization fitted to the raw data and the residuals from the trend for
temperature and elevation.

Fitted sills in lower triangle for the raw data Fitted sills in lower triangle for
the residuals

Nugget 0.0 Elevation 0.0 Nugget

Variances 0.0 0.6 Cross Temperature . 00 14 variances

Sill 350826.2 Elevation 258385.0 Sill

Variances -1169.6 6.3 Cross Temperature -821.4 26 variances

Figure 2 shows the experimental cross variograms, the fitted models together with the hull of
perfect correlation (the two outer lines). The cross variogram of the residuals coincide with the
hull showing a strong correlation. That for the raw data is close to the hull.

2) Temp x Elevation b)

Temp x Elev residuals

Variance
Variance

00 05 10 15 20 0.0 0.5 10
Lag Lag /m

Figure 2: a) Cross variogram of the raw data and b) cross variogram of the residuals, with the
hulls of perfect correlation.

Cokriging

The first analysis was to test the modelling and to assess the effects on the estimates of using
either the raw data or the residuals. Twenty five of the 100 sites were removed from the raw
data and the residuals. Using the models of coregionalization given above the values at the 25
validation points were estimated by punctual cokriging for the raw and residual data,
respectively. In addition the raw data were used for autokriging the validation points. The
original values, the estimates and the standard errors are given in Table 2.



For every validation point the cokriged estimate has a smaller standard error than the
autokriged estimate. The differences are small, but they show consistently that cokriging
confers a small benefit in terms of estimating temperature more reliably. In addition the
estimates are consistently closer to the original values for cokriging of the raw data. For the
residuals the standard errors from cokriging are smaller for 15 of the 25 validation points. This
was somewhat surprising in relation to the fact that the variograms of the residuals did not
appear to be an improvement over that of the raw data. For the residuals the trend was added
back so that the values could be compared with the raw data. The estimates are not as
consistently good as they are for cokriging with the raw data.

Table 4. Comparison between the raw temperature data, the autokriged estimates and the
cokriged estimates, and the cokriged estimates for the residuals and with the trend added back.

Original Autokriging Cokriging Cokriging residuals

X Y ValueEstimate SE Estimate SE Estimate Est+trend SE
212705 37.90 540 53.33 248 53.32 2.43 0.5392 5348 2.40
-127.10 37.70 540 5435 173 5425 1.67 0.8142 5371 191
-126.50 33.50 60.0 60.03 1.63 60.07 1.56-1.3596 58.38 1.82
-128.10 3520 570 57.19 2.19 5736 2.12-0.0677 57.96 2.16
-127.75 37.90 53.0 53.86 1.55 53.64 149 0.5506 53.74 1.79
-128.00 3620 54.0 55.17 4.09 55.13 4.08-0.4151 56.08 3.84
-126.60 37.50 54.0 53.17 2.63 53.24 2.60 0.3207 54.11 2.57
212890 37.10 480 54.50 4.52 5447 4.51-0.0800 5576 4.03
-129.40 37.00 55.0 5501 5.43 5501 5.42 0.1675 5691 431
-126.75 3430 58.0 58.36 5.29 5833 5.28-0.5767 58.26 4.30
-127.65 37.45 56.0 53.82 299 53.75 297 0.2831 5434 2.84
-125.65 39.60 50.0 49.56 4.68 49.63 4.66 0.2680 49.52 4.02
-129.01 35.10 59.0 57.95 196 57.87 1.93-0.5659 5847 2.09
-124.80 40.45 49.0 4922 473 4936 4.72 0.6924 4836 3.86
212830 41.80 33.0 4268 471 4271 4.68-2.4696 40.90 3.72
-128.60 35.90 57.0 56.81 171 56.80 1.63-0.0015 57.47 1383
-126.50 3675 540 53.60 3.01 53.22 2.97-1.7979 5347 274
-127.10 3745 540 54.94 193 54.89 1.89 1.0006 5488 2.10
-128.20 3640 58.0 5479 3.35 5476 3.33-0.4044 5591 3.15
-127.95 37.40 53.0 53.25 0.98 53.30 0.93 0.1380 54.47 1.53
-129.40 36.03 58.0 56.87 1.50 56.92 1.43 0.5288 5885 1.69
-124.65 38.00 520 5197 166 51.68 1.60-0.4415 53.86 1.81
-126.40 34.80 58.0 5745 5.02 57.54 5.00-0.6245 57.73 3.94
-125.80 3925 51.0 49.95 4.83 50.00 4.82 0.1461 50.22 4.18
213040 4230 45.0 47.26 6.34 47.38 6.33-03178 4531 4.23

The entire data set was cokriged as above, but this time using all of the elevation data. The
estimates and the standard errors were mapped, Figures 3 to 5. Figures 3a and 4a show the
maps of temperature from autokriged and cokriged estimates, respectively. There is
remarkably little difference between them. Figure 5a shows the results of cokriging using the
residuals and then adding the trend back. This is more different. This appears to show some
distortion, however, it is difficult to be certain because we did not have the outline of Korea to
superimpose on the estimates. This will be done at TEC. Figures 3b, 4b and 6b show the
standard errors for temperature. They are slightly less for cokriging. These values show the
pattern of sampling and also the coastline of the country.



Ordinary kriged estimates of temperature for Korea
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Figure 3: a) Map of estimates from autokriging of temperature for Korea,
b) map of the standard errors from autokriging of temperature




Cokriged estimates of temperature for Korea
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Figure 4: a) Map of cokriged estimates of temperature for Korea,
b) map of the standard errors from cokriging of temperature.
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Figure 5: a) Map of the cokriged estimates of the residuals for temperature with trend added back for Korea,
b) map of the standard errors from cokriging the residuals of temperature.




Part I
Introduction

In this report the first part of the vegetation analysis will be described. It covers the analysis of
the quantitative data in surveys 1 and 2 which have been combined for this analysis in parts.
The remaining analyses of the class data for surveys 1, 2 and 4 will be part of the final report.

Surveys 1 and 2

Survey 1 was carried out in 1997 at A. P. Hill. The sample comprises several small transects
that have a random starting positions within the seven strata of the training areas. The plot size
corresponded with the SPOT pixel size of 20 m by 20 m. The points along the transects were
at 100 m intervals (see Figure 6). This survey mainly embraced either hard or soft woodland
areas of vegetation. The second survey was a square grid with an interval of 300 m covering
the whole of our study site at A. P. Hill (Figure 7). Since there were many sites without
quantitative woodland information, because it included grassland, buildings and hard standing,
the sites with quantitative information were analysed with the data from the first survey.

Sample 1 (170)
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Figure 6: Map of sites for Survey 1.
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Figure 7: Map of sites for Survey 2.

Exploratory data analysis

The summary statistics of the 17 quantitative variables were analysed for surveys 1 and 2
separately. They are given in Tables 5 and 6. The skewness values are generally small showing
that the statistical distribution does not depart seriously from normal, except for stem spacing
(survey 1). This variable had one extreme value which was removed to obtain a near-normal
distribution for the variogram analysis. Figures 8 and 9 show the histograms of the variables
listed below for survey 1. The digital numbers for the three wavebands of the SPOT image that
coincided with sites where the vegetation had been examined were also extracted and their
summary statistics are given in Table 7 for both surveys. Their histograms are shown in Figure

10.

Variables analysed and their abbreviation:

This part of the list contains those variables related to forest density (Set A):

maxcc - maximum range of visual estimate of crown closure (%)

ovstmin - minimum range of overstory height (ft)

ovstmax - mamimum range of overstory height (ft)
undstmn - minimum range of understory height (ft)

undstmx - maximum range of understory height (ft)



ba_f - estimate of basal area per hectare (metric units)

stem - total stems in plot (count)

ba_tot - sum of all basal area for each tree per plot (square metres)

stemsp - average minimum distance between stems within each plot (metres)

This part of the list contains those variables related to tree species (Set B):

ba_so - percentage of total basal area that is softwood in each plot

ba_ha - percentage of total basal area that is hardwood in each plot

stem_so - percentage of total number of stems that are softwood in each plot
stem_ha - percentage of total number of stems that are hardwood in each plot
bad_so - percentage of dominant basal area that is softwood in each plot

bad ha - percentage of dominant basal area that is hardwood in each plot

stemd_so - percentage of dominant number of stems that are softwood in each plot
stemd_ha - percentage of dominant number of stems that are hardwood in each plot

Table 5: Summary statistics for vegetation measures for Survey 1

Variable | N  Missing Mean Median Min Max Variance Standard Skewness  Kurtosis
deviation

maxcc 169 1 67.04 70.0 0.0 100.0 5433 23.31 -1.22 0.43
minovst | 169 1 7372 800 150 1100 395.1 19.88 -1.19 1.18
maxovst | 169 1 78.54 80.0 200 110.0 405.1 20.13 -1.32 1.29
minunst | 169 1 11.35 100 0.0 30.0 333 5.77 0.96 231
maxunst | 169 1 20.66 20.0 0.0 35.0 62.2 7.89 -0.70 0.28
ba_f 168 1 3436 343 24 762 199.4 14.12 0.05 0.31
stem 169 1 2044 190 0.0 81.0 112.9 10.62 1.96 7.01
bat_tot 169 1 107 11 0.0 2.4 0.2 0.45 0.01 031
stemsp 168 2 233 22 0.9 73 0.6 0.78 2.00 9.10
ba_so 168 2 46.16 43.5 0.0 1000 14871 38.56 0.13 -1.58
ba_ha 168 2 53.54 545 0.0 100.0  1487.1 38.56 0.13 -1.58
stem_so | 138 2 4101 333 0.0 1000 13389 36.59 033 -1.41
stem_ha | 168 2 58.99 66.7 0.0 100.0 13389 36.59 033 -1.41
bad_so 168 2 4894 46.7 00 1000 16103 40.13 0.06 -1.64
bad_ha | 168 2 51.06 54.3 0.0 1000 16103 40.13 0.06 -1.64
Stemd_ | 168 2 49.14 483 0.0 1000 15707 39.63 0.02 -1.62
S0

Stemd_ | 168 2 50.86 51.2 0.0 100.0 1570.7 39.63 0.02 -1.62
ha




Table 6;: Summary statistics for vegetation measures for Survey 2

Variable | N Missing Mean Median Min Max Variance Standard Skewness  Kurtosis
deviation
maxcc 60 54 68.17 80.0 50 100.0 674.5 25.97 -0.99 -0.02
minovst 0 114 * * * * * * * *
maxovst | 60 54 73.75 80.0 20.0 100.0 315.8 17.77 -1.32 1.52
minunst | 17 97 859 100 1.0 20.0 34.9 5.91 0.28 -1.07
maxunst | 54 60 1511 150 3.0 250 239 4.89 -0.07 -0.31
ba_f 58 56 3206 345 3.4 57.9 175.9 13.26 -0.35 -0.73
stem 58 56 1991 185 5.0 440 96.1 9.80 0.63 -0.29
bat_tot 58 56 1.07 1.1 0.1 18 0.17 0.42 -0.35 -0.73
stemsp 58 56 250 24 12 5.0 0.57 0.76 1.05 1.19
ba_so 58 56 57.54 63.5 0.0 1000 13603 36.88 -0.31 -1.46
ba_ha 58 56 4246 36.5 0.0 1000 13603 36.88 -0.31 -1.46
stem_so | 58 56 5033 521 0.0 1000 12884 35.89 -0.05 -1.53
stem_ha | 58 56 49.67 479 0.0 1000 12884 35.89 -0.05 -1.53
bad_so 58 56 60.87 64.9 00 1000 14725 38.37 -0.38 -1.43
bad_ha 58 56 39.14 351 00 1000 14725 38.37 -0.38 -1.43
Stemd_ 58 56 60.15 718 0.0 1000 1520.1 38.99 -0.34 -1.52
so
Stemd_ 58 56 3993 282 0.0 100.0 1520.1 38.99 -0.34 -1.52
ha
Table 7. Summary statistics for the three wavebands from SPOT for Surveys 1 and 2
Variable | N Missing  Mean Median Min Max Variance Standard Skewness  Kurtosis
deviation
Red (1) | 116 54 6194 61.0 58.0 80.0 14.5 3.81 2.49 7.18
Green 116 54 3633 340 320 670 33.56 5.79 3.17 11.71
)
NIR(3) | 116 54 1193 121.0 62.0 1480 2495 15.79 -0.55 0.57
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Figure 8: Histograms of variables in Set A of Survey 1.
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coinciding with Surveys 1 and 2.

To assess which of these variables were likely to represent the variation the data most strongly
a principal components analysis was done on the correlation matrix. The latter was used
because it effectively standardizes the data. The first component accounted for 53.7% of the
variation and the second 18%. The variables that ‘loaded‘ most heavily on the first component
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ba_so, ba_ha, stem_so, stem_so, stem_ha, bad_so, bad_ha, stemd_so and stem_ha.

The variables that ‘loaded‘ most heavily on the second component were:

maxce, ba_f, stem, ba_tot and stemsp.




A set of variables that is considered to express the variation and summarise it adequately is:
maxcc, ba_f, stem, stemsp, ovstmax, undstmx and ba_so.

These are based on the distribution of the variables in the plane of PC1 and PC2 (Figure 11).
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Figure 11: Plot of variables based on their loadings in the plane of PC1 and PC2.

Table 8 gives the correlations for the vegetation measures and the DNs of the wavebands. In
general these are small for the vegetation measures and DNs. Those for NIR are the largest for
maxce, stem_so, ste_ha, stemd so and stem_ha. There are some strong correlations for the
vegetation measure which are to be expected, for example ba_so and ba_ha which add to
100%.



Table 8. Correlations for the vegetation measures and the three wavebands from the SPOT

image.

*** Correlation

bandl 1.000
band?2 0.960 1.000
band3 -0.205 -0.308
cc 0.023 0.017
ovstmin 0.036 0.018
ovstmax 0.030 0.021
undstmn ~0.148 -0.113
undstmx 0.073 0.080
ba_£ 0.179 0.177
stem 0.081 0.098
ba_tot 0.178 0.177
ba_so 0.005 -0.005
ba_ha -0.005 0.005
stem_so 0.004 0.010
stem_ha -0.004 -0.010
bad_so 0.002 -0.015
bad_ha -0.002 0.015
stemd_so 0.000 -0.006
stemd_ha 0.000 0.006
stemsp -0.007 -0.033
bandl band2

undstmx 1.000
ba_f 0.396 1.000
stem -0.014 0.260
ba_tot 0.396 1.000
ba_so -0.146 -0.385
ba_ha 0.146 0.385
stem_so -0.207 -0.385
stem_ha 0.207 0.385
bad_so ~0.116 -0.376
bad_ha 0.116 0.376
stemd_so -0.121 -0.349
stemd_ha 0.121 0.349
stemsp -0.174 -0.302
undstmx ba_f

stem_ha 1.000
bad_so ~0.894 1.000
bad_ha 0.894 -1.000
stemd_so -0.939 0.966
stemd_ha 0.939 -0.966
stemsp 0.189 -0.076
stem_ha bad_so
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Variogram analysis

Experimental variograms were computed for all of the variables listed above for the combined
data from surveys 1 and 2. Variograms were computed in four directions at the outset, but the
number of sites is marginal for this. For set A variables the directions of maximum and
minimum variation are not consistent, but for set B variables the variation in direction NNE to
SSW (o) have the longest range of spatial dependence and the largest sill variances and those
at right angles have the shortest ranges and the smaller sill varinaces (*) (Figures 12 and 13).

Figures 14 and 15 show the experimental omnidirectional variograms for the two sets of
variables from surveys 1 and 2. Those that show reasonable spatial structure are: maxcc,
ovstmin, ovstmax, undstmn, stem, ba_so, ba_ha, stem_so, stem_ha, bad_so, bad_ha, stemd_so
and stemd_ha. For the twin variables, such as ba_so and ba_ha the variograms are identical for
the reasons given earlier. The following variables were modelled: maxcc, overstory height
(derived from ovstmin and ovstmax), understory height (derived from undstmn and undstmx),
ba_f, stem, stem spacing, ba_so (equivalent to ba_ha also), stem_so, bad_so and stemd_so. In
addition the multivariate variogram from this analysis was computed and modelled, also
elevation, and the three wavebands and NDVI. They are shown in Figures 16 to 19.

Table 7 gives the model parameters of the variables modelled. The experimental variograms of
many of the properties in Table 7 are somewhat erratic. This could be related to the irregular
sampling scheme. However, there appears to be some evidence of periodicity in several
variograms with wavelengths of between 500 m and 700 m. A previous report that contained
transects of the pixels to match the vegetation ones also showed periodicity in the DNs. There
appears to be some relation between the range of spatial dependence of elevation and several
of the vegetation measures. The multivariate variogram has identified a short range component
of variation of just over 300 m which matches with the short range component of NIR. The
variograms of the vegetation classes will be examined in the next report. The models fitted to
directional variograms of ba_so are revealing: the variation in direction 135° is 462 m and that
in direction 45° is 1271 m. This suggeSts that the different ranges might reflect some
anisotropy in the variation. This was identified in the image data, but because the sill heights
were different this signalled zonal anisotropy which cannot be corrected simly. It suggests that
there are distinct strata present and this is evident from the areas with different kinds of
vegetation. There are also distinct landscape units which will be explored in the next report.
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Figure 12: Directional experimental variograms for Set A variables for Surveys 1 and 2.
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Table 9. Variogram model parameters.

Variables Model type Nugget  Sill Sill Range  Range
variance ¢, c a; (m) a(m)

Canopy closure | Double 0 3974 2183 129.0 1730.0
spherical

Overstory height | Circular 237.9 2123 1850.0

Understory Circular 19.2 12.6 1391.0

height

Basal are (field) | Spherical 69.9 126.5 232.0

Stem Pentaspherical ~ 21.4 65.7 380.0

Stem spacing Circular 0.305 0.193 407.0

ba_so.ha Double 0 980.2 563.5 182.0 1553.0
spherical

ba_so/ha (45°) Circular 662.3 1271.0 1271.0

ba_so/ha (135°) | Circular 428.0 841.4 462.0

stem_so/ha Spherical 892.7 8383 1428.0

bad_so/ha Spherical 909.1 819.9 1274.0

stemd_so/ha Circular 839.9 869.7 1432.0

Multivariate Circular 6.05 3.08 309.9

variogram

Elevation Circular 93.05 3125 1562.0

Red (1) Pentaspherical 221 17.89 906.0

Green (2) Double 0 20.6 19.7 386.0 1047.0
spherical

NIR (3) Circular 99.24 145.0 673.6

NDVI Double 0.0015 0.00307 0.00202 666.8 1261.0

spherical
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Cross variograms

The theory for computing cross variograms between two or more variables is given at the
beginning of the report. Cross variograms were computed between the vegetation measures
and the values from the three SPOT wavebands. Those selected and shown in Figures 19 to 22
show some relation between the variables. For band 1 (Red) there is a negative relation
between maxcc, unstmn and stem, and a positive relation between stem spacing (Figure 18).
The relations with the other variables is not clear. For band 2 (Green) there are clear negative
relations with maxcc and stem, and a positive relation with stem spacing (Figure 20). For band
3 (NIR) there are positive relations between maxcc, ovstmax, stem and ba_f, and a negative
relation with ba_so (Figure 21). Cross variograms with elevation are give in Figure 22. Overall
their relations with the vegetation measures are weak.
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Figure 19: Cross experimental variograms between band 1 (Red) and selected vegetation
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